NormalBayesClassifier
Objective-C
@interface NormalBayesClassifier : StatModel
Swift
class NormalBayesClassifier : StatModel
Bayes classifier for normally distributed data.
See
REF: ml_intro_bayesMember of Ml
-
Creates empty model Use StatModel::train to train the model after creation.
Declaration
Objective-C
+ (nonnull NormalBayesClassifier *)create;
Swift
class func create() -> NormalBayesClassifier
-
Loads and creates a serialized NormalBayesClassifier from a file
Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk. Load the NormalBayesClassifier from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
Declaration
Objective-C
+ (nonnull NormalBayesClassifier *)load:(nonnull NSString *)filepath nodeName:(nonnull NSString *)nodeName;
Swift
class func load(filepath: String, nodeName: String) -> NormalBayesClassifier
Parameters
filepath
path to serialized NormalBayesClassifier
nodeName
name of node containing the classifier
-
Loads and creates a serialized NormalBayesClassifier from a file
Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk. Load the NormalBayesClassifier from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
Declaration
Objective-C
+ (nonnull NormalBayesClassifier *)load:(nonnull NSString *)filepath;
Swift
class func load(filepath: String) -> NormalBayesClassifier
Parameters
filepath
path to serialized NormalBayesClassifier
-
Predicts the response for sample(s).
The method estimates the most probable classes for input vectors. Input vectors (one or more) are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one output vector outputs. The predicted class for a single input vector is returned by the method. The vector outputProbs contains the output probabilities corresponding to each element of result.
-
Predicts the response for sample(s).
The method estimates the most probable classes for input vectors. Input vectors (one or more) are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one output vector outputs. The predicted class for a single input vector is returned by the method. The vector outputProbs contains the output probabilities corresponding to each element of result.