ANN_MLP
Artificial Neural Networks - Multi-Layer Perceptrons.
Unlike many other models in ML that are constructed and trained at once, in the MLP model these steps are separated. First, a network with the specified topology is created using the non-default constructor or the method ANN_MLP::create. All the weights are set to zeros. Then, the network is trained using a set of input and output vectors. The training procedure can be repeated more than once, that is, the weights can be adjusted based on the new training data.
Additional flags for StatModel::train are available: ANN_MLP::TrainFlags.
See
REF: ml_intro_annMember of Ml
-
Integer vector specifying the number of neurons in each layer including the input and output layers. The very first element specifies the number of elements in the input layer. The last element - number of elements in the output layer.
See
-setLayerSizes:
-
Creates empty model
Use StatModel::train to train the model, Algorithm::load\<ANN_MLP\>(filename) to load the pre-trained model. Note that the train method has optional flags: ANN_MLP::TrainFlags.
Declaration
Objective-C
+ (nonnull ANN_MLP *)create;
Swift
class func create() -> ANN_MLP
-
Loads and creates a serialized ANN from a file
Use ANN::save to serialize and store an ANN to disk. Load the ANN from this file again, by calling this function with the path to the file.
Declaration
Objective-C
+ (nonnull ANN_MLP *)load:(nonnull NSString *)filepath;
Swift
class func load(filepath: String) -> ANN_MLP
Parameters
filepath
path to serialized ANN
-
Declaration
Objective-C
- (nonnull TermCriteria *)getTermCriteria;
Swift
func getTermCriteria() -> TermCriteria
-
Declaration
Objective-C
- (double)getAnnealCoolingRatio;
Swift
func getAnnealCoolingRatio() -> Double
-
Declaration
Objective-C
- (double)getAnnealFinalT;
Swift
func getAnnealFinalT() -> Double
-
Declaration
Objective-C
- (double)getAnnealInitialT;
Swift
func getAnnealInitialT() -> Double
-
Declaration
Objective-C
- (double)getBackpropMomentumScale;
Swift
func getBackpropMomentumScale() -> Double
-
Declaration
Objective-C
- (double)getBackpropWeightScale;
Swift
func getBackpropWeightScale() -> Double
-
See
-setRpropDW0:
Declaration
Objective-C
- (double)getRpropDW0;
Swift
func getRpropDW0() -> Double
-
See
-setRpropDWMax:
Declaration
Objective-C
- (double)getRpropDWMax;
Swift
func getRpropDWMax() -> Double
-
See
-setRpropDWMin:
Declaration
Objective-C
- (double)getRpropDWMin;
Swift
func getRpropDWMin() -> Double
-
Declaration
Objective-C
- (double)getRpropDWMinus;
Swift
func getRpropDWMinus() -> Double
-
See
-setRpropDWPlus:
Declaration
Objective-C
- (double)getRpropDWPlus;
Swift
func getRpropDWPlus() -> Double
-
Declaration
Objective-C
- (int)getAnnealItePerStep;
Swift
func getAnnealItePerStep() -> Int32
-
Returns current training method
Declaration
Objective-C
- (int)getTrainMethod;
Swift
func getTrainMethod() -> Int32
-
Initialize the activation function for each neuron. Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM.
Declaration
Objective-C
- (void)setActivationFunction:(int)type param1:(double)param1 param2:(double)param2;
Swift
func setActivationFunction(type: Int32, param1: Double, param2: Double)
Parameters
type
The type of activation function. See ANN_MLP::ActivationFunctions.
param1
The first parameter of the activation function,
\alpha. Default value is 0.param2
The second parameter of the activation function,
\beta. Default value is 0. -
Initialize the activation function for each neuron. Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM.
Declaration
Objective-C
- (void)setActivationFunction:(int)type param1:(double)param1;
Swift
func setActivationFunction(type: Int32, param1: Double)
Parameters
type
The type of activation function. See ANN_MLP::ActivationFunctions.
param1
The first parameter of the activation function,
\alpha. Default value is 0. -
Initialize the activation function for each neuron. Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM.
Declaration
Objective-C
- (void)setActivationFunction:(int)type;
Swift
func setActivationFunction(type: Int32)
Parameters
type
The type of activation function. See ANN_MLP::ActivationFunctions.
-
getAnnealCoolingRatio - see:
-getAnnealCoolingRatio:
Declaration
Objective-C
- (void)setAnnealCoolingRatio:(double)val;
Swift
func setAnnealCoolingRatio(val: Double)
-
getAnnealFinalT - see:
-getAnnealFinalT:
Declaration
Objective-C
- (void)setAnnealFinalT:(double)val;
Swift
func setAnnealFinalT(val: Double)
-
getAnnealInitialT - see:
-getAnnealInitialT:
Declaration
Objective-C
- (void)setAnnealInitialT:(double)val;
Swift
func setAnnealInitialT(val: Double)
-
getAnnealItePerStep - see:
-getAnnealItePerStep:
Declaration
Objective-C
- (void)setAnnealItePerStep:(int)val;
Swift
func setAnnealItePerStep(val: Int32)
-
getBackpropMomentumScale - see:
-getBackpropMomentumScale:
Declaration
Objective-C
- (void)setBackpropMomentumScale:(double)val;
Swift
func setBackpropMomentumScale(val: Double)
-
getBackpropWeightScale - see:
-getBackpropWeightScale:
Declaration
Objective-C
- (void)setBackpropWeightScale:(double)val;
Swift
func setBackpropWeightScale(val: Double)
-
Integer vector specifying the number of neurons in each layer including the input and output layers. The very first element specifies the number of elements in the input layer. The last element - number of elements in the output layer. Default value is empty Mat.
See
-getLayerSizes:
-
getRpropDW0 - see:
-getRpropDW0:
Declaration
Objective-C
- (void)setRpropDW0:(double)val;
Swift
func setRpropDW0(val: Double)
-
getRpropDWMax - see:
-getRpropDWMax:
Declaration
Objective-C
- (void)setRpropDWMax:(double)val;
Swift
func setRpropDWMax(val: Double)
-
getRpropDWMin - see:
-getRpropDWMin:
Declaration
Objective-C
- (void)setRpropDWMin:(double)val;
Swift
func setRpropDWMin(val: Double)
-
getRpropDWMinus - see:
-getRpropDWMinus:
Declaration
Objective-C
- (void)setRpropDWMinus:(double)val;
Swift
func setRpropDWMinus(val: Double)
-
getRpropDWPlus - see:
-getRpropDWPlus:
Declaration
Objective-C
- (void)setRpropDWPlus:(double)val;
Swift
func setRpropDWPlus(val: Double)
-
getTermCriteria - see:
-getTermCriteria:
Declaration
Objective-C
- (void)setTermCriteria:(nonnull TermCriteria *)val;
Swift
func setTermCriteria(val: TermCriteria)
-
Sets training method and common parameters.
Declaration
Objective-C
- (void)setTrainMethod:(int)method param1:(double)param1 param2:(double)param2;
Swift
func setTrainMethod(method: Int32, param1: Double, param2: Double)
Parameters
method
Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods.
param1
passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP and to initialT for ANN_MLP::ANNEAL.
param2
passed to setRpropDWMin for ANN_MLP::RPROP and to setBackpropMomentumScale for ANN_MLP::BACKPROP and to finalT for ANN_MLP::ANNEAL.
-
Sets training method and common parameters.
Declaration
Objective-C
- (void)setTrainMethod:(int)method param1:(double)param1;
Swift
func setTrainMethod(method: Int32, param1: Double)
Parameters
method
Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods.
param1
passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP and to initialT for ANN_MLP::ANNEAL.
-
Sets training method and common parameters.
Declaration
Objective-C
- (void)setTrainMethod:(int)method;
Swift
func setTrainMethod(method: Int32)
Parameters
method
Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods.