DetectionModel

Objective-C

@interface DetectionModel : Model

Swift

class DetectionModel : Model

This class represents high-level API for object detection networks.

DetectionModel allows to set params for preprocessing input image. DetectionModel creates net from file with trained weights and config, sets preprocessing input, runs forward pass and return result detections. For DetectionModel SSD, Faster R-CNN, YOLO topologies are supported.

Member of Dnn

Methods

  • Create model from deep learning network.

    Declaration

    Objective-C

    - (nonnull instancetype)initWithNetwork:(nonnull Net *)network;

    Swift

    init(network: Net)

    Parameters

    network

    Net object.

  • Create detection model from network represented in one of the supported formats. An order of @p model and @p config arguments does not matter.

    Declaration

    Objective-C

    - (nonnull instancetype)initWithModel:(nonnull NSString *)model
                                   config:(nonnull NSString *)config;

    Swift

    init(model: String, config: String)

    Parameters

    model

    Binary file contains trained weights.

    config

    Text file contains network configuration.

  • Create detection model from network represented in one of the supported formats. An order of @p model and @p config arguments does not matter.

    Declaration

    Objective-C

    - (nonnull instancetype)initWithModel:(nonnull NSString *)model;

    Swift

    init(model: String)

    Parameters

    model

    Binary file contains trained weights.

  • Given the @p input frame, create input blob, run net and return result detections.

    Declaration

    Objective-C

    - (void)detect:(nonnull Mat *)frame
             classIds:(nonnull IntVector *)classIds
          confidences:(nonnull FloatVector *)confidences
                boxes:(nonnull NSMutableArray<Rect2i *> *)boxes
        confThreshold:(float)confThreshold
         nmsThreshold:(float)nmsThreshold;

    Swift

    func detect(frame: Mat, classIds: IntVector, confidences: FloatVector, boxes: NSMutableArray, confThreshold: Float, nmsThreshold: Float)

    Parameters

    classIds

    Class indexes in result detection.

    confidences

    A set of corresponding confidences.

    boxes

    A set of bounding boxes.

    confThreshold

    A threshold used to filter boxes by confidences.

    nmsThreshold

    A threshold used in non maximum suppression.

  • Given the @p input frame, create input blob, run net and return result detections.

    Declaration

    Objective-C

    - (void)detect:(nonnull Mat *)frame
             classIds:(nonnull IntVector *)classIds
          confidences:(nonnull FloatVector *)confidences
                boxes:(nonnull NSMutableArray<Rect2i *> *)boxes
        confThreshold:(float)confThreshold;

    Swift

    func detect(frame: Mat, classIds: IntVector, confidences: FloatVector, boxes: NSMutableArray, confThreshold: Float)

    Parameters

    classIds

    Class indexes in result detection.

    confidences

    A set of corresponding confidences.

    boxes

    A set of bounding boxes.

    confThreshold

    A threshold used to filter boxes by confidences.

  • Given the @p input frame, create input blob, run net and return result detections.

    Declaration

    Objective-C

    - (void)detect:(nonnull Mat *)frame
           classIds:(nonnull IntVector *)classIds
        confidences:(nonnull FloatVector *)confidences
              boxes:(nonnull NSMutableArray<Rect2i *> *)boxes;

    Swift

    func detect(frame: Mat, classIds: IntVector, confidences: FloatVector, boxes: NSMutableArray)

    Parameters

    classIds

    Class indexes in result detection.

    confidences

    A set of corresponding confidences.

    boxes

    A set of bounding boxes.