Face
Objective-C
@interface Face : NSObject
Swift
class Face : NSObject
The Face module
Member classes: FaceRecognizer
, Facemark
, PredictCollector
, StandardCollector
, FacemarkKazemi
, FacemarkAAM
, BIF
, MACE
, FacemarkTrain
, FacemarkLBF
, BasicFaceRecognizer
, EigenFaceRecognizer
, FisherFaceRecognizer
, LBPHFaceRecognizer
-
Default face detector This function is mainly utilized by the implementation of a Facemark Algorithm. End users are advised to use function Facemark::getFaces which can be manually defined and circumvented to the algorithm by Facemark::setFaceDetector.
Example of usage
std::vectorcv::Rect faces; CParams params(“haarcascade_frontalface_alt.xml”); cv::face::getFaces(frame, faces, ¶ms); for(int j=0;j<faces.size();j++){ cv::rectangle(frame, faces[j], cv::Scalar(255,0,255)); } cv::imshow(“detection”, frame);
Declaration
Parameters
image
The input image to be processed.
faces
Output of the function which represent region of interest of the detected faces. Each face is stored in cv::Rect container.
-
A utility to load list of paths to training image and annotation file.
Example of usage:
String imageFiles = “images_path.txt”; String ptsFiles = “annotations_path.txt”; std::vector
images_train; std::vector landmarks_train; loadDatasetList(imageFiles,ptsFiles,images_train,landmarks_train); Declaration
Objective-C
+ (BOOL)loadDatasetList:(nonnull NSString *)imageList annotationList:(nonnull NSString *)annotationList images:(nonnull NSArray<NSString *> *)images annotations:(nonnull NSArray<NSString *> *)annotations;
Swift
class func loadDatasetList(imageList: String, annotationList: String, images: [String], annotations: [String]) -> Bool
Parameters
imageList
The specified file contains paths to the training images.
annotationList
The specified file contains paths to the training annotations.
images
The loaded paths of training images.
annotations
The loaded paths of annotation files.
-
A utility to load facial landmark information from a given file.
Example of usage
std::vector
points; face::loadFacePoints(“filename.txt”, points, 0.0f); The annotation file should follow the default format which is
version: 1 n_points: 68 { 212.716603 499.771793 230.232816 566.290071 … }
where n_points is the number of points considered and each point is represented as its position in x and y.
Declaration
Objective-C
+ (BOOL)loadFacePoints:(nonnull NSString *)filename points:(nonnull Mat *)points offset:(float)offset;
Swift
class func loadFacePoints(filename: String, points: Mat, offset: Float) -> Bool
Parameters
filename
The filename of file contains the facial landmarks data.
points
The loaded facial landmark points.
offset
An offset value to adjust the loaded points.
-
A utility to load facial landmark information from a given file.
Example of usage
std::vector
points; face::loadFacePoints(“filename.txt”, points, 0.0f); The annotation file should follow the default format which is
version: 1 n_points: 68 { 212.716603 499.771793 230.232816 566.290071 … }
where n_points is the number of points considered and each point is represented as its position in x and y.
Declaration
Objective-C
+ (BOOL)loadFacePoints:(nonnull NSString *)filename points:(nonnull Mat *)points;
Swift
class func loadFacePoints(filename: String, points: Mat) -> Bool
Parameters
filename
The filename of file contains the facial landmarks data.
points
The loaded facial landmark points.
-
A utility to load facial landmark dataset from a single file.
/home/user/ibug/image_003_1.jpg 336.820955 240.864510 334.238298 260.922709 335.266918 … /home/user/ibug/image_005_1.jpg 376.158428 230.845712 376.736984 254.924635 383.265403 …
Example of usage
cv::String imageFiles = “../data/images_train.txt”; cv::String ptsFiles = “../data/points_train.txt”; std::vector
images; std::vectorstd::vector<Point2f > facePoints; loadTrainingData(imageFiles, ptsFiles, images, facePoints, 0.0f); Declaration
Objective-C
+ (BOOL)loadTrainingData:(nonnull NSString *)filename images:(nonnull NSArray<NSString *> *)images facePoints:(nonnull Mat *)facePoints delim:(char)delim offset:(float)offset;
Swift
class func loadTrainingData(filename: String, images: [String], facePoints: Mat, delim: Int8, offset: Float) -> Bool
Parameters
filename
The filename of a file that contains the dataset information. Each line contains the filename of an image followed by pairs of x and y values of facial landmarks points separated by a space. Example
images
A vector where each element represent the filename of image in the dataset. Images are not loaded by default to save the memory.
facePoints
The loaded landmark points for all training data.
delim
Delimiter between each element, the default value is a whitespace.
offset
An offset value to adjust the loaded points.
-
A utility to load facial landmark dataset from a single file.
/home/user/ibug/image_003_1.jpg 336.820955 240.864510 334.238298 260.922709 335.266918 … /home/user/ibug/image_005_1.jpg 376.158428 230.845712 376.736984 254.924635 383.265403 …
Example of usage
cv::String imageFiles = “../data/images_train.txt”; cv::String ptsFiles = “../data/points_train.txt”; std::vector
images; std::vectorstd::vector<Point2f > facePoints; loadTrainingData(imageFiles, ptsFiles, images, facePoints, 0.0f); Declaration
Objective-C
+ (BOOL)loadTrainingData:(nonnull NSString *)filename images:(nonnull NSArray<NSString *> *)images facePoints:(nonnull Mat *)facePoints delim:(char)delim;
Swift
class func loadTrainingData(filename: String, images: [String], facePoints: Mat, delim: Int8) -> Bool
Parameters
filename
The filename of a file that contains the dataset information. Each line contains the filename of an image followed by pairs of x and y values of facial landmarks points separated by a space. Example
images
A vector where each element represent the filename of image in the dataset. Images are not loaded by default to save the memory.
facePoints
The loaded landmark points for all training data.
delim
Delimiter between each element, the default value is a whitespace.
-
A utility to load facial landmark dataset from a single file.
/home/user/ibug/image_003_1.jpg 336.820955 240.864510 334.238298 260.922709 335.266918 … /home/user/ibug/image_005_1.jpg 376.158428 230.845712 376.736984 254.924635 383.265403 …
Example of usage
cv::String imageFiles = “../data/images_train.txt”; cv::String ptsFiles = “../data/points_train.txt”; std::vector
images; std::vectorstd::vector<Point2f > facePoints; loadTrainingData(imageFiles, ptsFiles, images, facePoints, 0.0f); Declaration
Objective-C
+ (BOOL)loadTrainingData:(nonnull NSString *)filename images:(nonnull NSArray<NSString *> *)images facePoints:(nonnull Mat *)facePoints;
Swift
class func loadTrainingData(filename: String, images: [String], facePoints: Mat) -> Bool
Parameters
filename
The filename of a file that contains the dataset information. Each line contains the filename of an image followed by pairs of x and y values of facial landmarks points separated by a space. Example
images
A vector where each element represent the filename of image in the dataset. Images are not loaded by default to save the memory.
facePoints
The loaded landmark points for all training data.
-
A utility to load facial landmark information from the dataset.
Example of usage
cv::String imageFiles = “../data/images_train.txt”; cv::String ptsFiles = “../data/points_train.txt”; std::vector
images; std::vectorstd::vector<Point2f > facePoints; loadTrainingData(imageFiles, ptsFiles, images, facePoints, 0.0f); example of content in the images_train.txt
/home/user/ibug/image_003_1.jpg /home/user/ibug/image_004_1.jpg /home/user/ibug/image_005_1.jpg /home/user/ibug/image_006.jpg
example of content in the points_train.txt
/home/user/ibug/image_003_1.pts /home/user/ibug/image_004_1.pts /home/user/ibug/image_005_1.pts /home/user/ibug/image_006.pts
Declaration
Objective-C
+ (BOOL)loadTrainingData:(nonnull NSString *)imageList groundTruth:(nonnull NSString *)groundTruth images:(nonnull NSArray<NSString *> *)images facePoints:(nonnull Mat *)facePoints offset:(float)offset;
Swift
class func loadTrainingData(imageList: String, groundTruth: String, images: [String], facePoints: Mat, offset: Float) -> Bool
Parameters
imageList
A file contains the list of image filenames in the training dataset.
groundTruth
A file contains the list of filenames where the landmarks points information are stored. The content in each file should follow the standard format (see face::loadFacePoints).
images
A vector where each element represent the filename of image in the dataset. Images are not loaded by default to save the memory.
facePoints
The loaded landmark points for all training data.
offset
An offset value to adjust the loaded points.
-
A utility to load facial landmark information from the dataset.
Example of usage
cv::String imageFiles = “../data/images_train.txt”; cv::String ptsFiles = “../data/points_train.txt”; std::vector
images; std::vectorstd::vector<Point2f > facePoints; loadTrainingData(imageFiles, ptsFiles, images, facePoints, 0.0f); example of content in the images_train.txt
/home/user/ibug/image_003_1.jpg /home/user/ibug/image_004_1.jpg /home/user/ibug/image_005_1.jpg /home/user/ibug/image_006.jpg
example of content in the points_train.txt
/home/user/ibug/image_003_1.pts /home/user/ibug/image_004_1.pts /home/user/ibug/image_005_1.pts /home/user/ibug/image_006.pts
Declaration
Objective-C
+ (BOOL)loadTrainingData:(nonnull NSString *)imageList groundTruth:(nonnull NSString *)groundTruth images:(nonnull NSArray<NSString *> *)images facePoints:(nonnull Mat *)facePoints;
Swift
class func loadTrainingData(imageList: String, groundTruth: String, images: [String], facePoints: Mat) -> Bool
Parameters
imageList
A file contains the list of image filenames in the training dataset.
groundTruth
A file contains the list of filenames where the landmarks points information are stored. The content in each file should follow the standard format (see face::loadFacePoints).
images
A vector where each element represent the filename of image in the dataset. Images are not loaded by default to save the memory.
facePoints
The loaded landmark points for all training data.
-
This function extracts the data for training from .txt files which contains the corresponding image name and landmarks. The first file in each file should give the path of the image whose landmarks are being described in the file. Then in the subsequent lines there should be coordinates of the landmarks in the image i.e each line should be of the form x,y where x represents the x coordinate of the landmark and y represents the y coordinate of the landmark.
For reference you can see the files as provided in the HELEN dataset
Declaration
Objective-C
+ (BOOL)loadTrainingData:(nonnull NSArray<NSString *> *)filename trainlandmarks:(nonnull NSArray<NSArray<Point2f *> *> *)trainlandmarks trainimages:(nonnull NSArray<NSString *> *)trainimages;
Swift
class func loadTrainingData(filename: [String], trainlandmarks: [[Point2f]], trainimages: [String]) -> Bool
Parameters
filename
A vector of type cv::String containing name of the .txt files.
trainlandmarks
A vector of type cv::Point2f that would store shape or landmarks of all images.
trainimages
A vector of type cv::String which stores the name of images whose landmarks are tracked
Return Value
A boolean value. It returns true when it reads the data successfully and false otherwise
-
Utility to draw the detected facial landmark points
Example of usage
std::vector
faces; std::vectorstd::vector<Point2f > landmarks; facemark->getFaces(img, faces); facemark->fit(img, faces, landmarks); for(int j=0;j<rects.size();j++){ face::drawFacemarks(frame, landmarks[j], Scalar(0,0,255)); } Declaration
Parameters
image
The input image to be processed.
points
Contains the data of points which will be drawn.
color
The color of points in BGR format represented by cv::Scalar.
-
Utility to draw the detected facial landmark points
Example of usage
std::vector
faces; std::vectorstd::vector<Point2f > landmarks; facemark->getFaces(img, faces); facemark->fit(img, faces, landmarks); for(int j=0;j<rects.size();j++){ face::drawFacemarks(frame, landmarks[j], Scalar(0,0,255)); } Declaration
Parameters
image
The input image to be processed.
points
Contains the data of points which will be drawn.